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Abstract

The rise of 2D vision-language models (VLMs) has en-
abled a new level of language-driven 3D scene interaction,
setting new standards for prompt-based zero-shot inference
on various tasks [8] [14] [6] [10]. However, most experi-
ments are conducted on controlled indoor scenes and vali-
dated against concrete, tangible ground-truth classes.

In this work, we adapt existing methods to work on large,
city-scale datasets generated using Google Earth [1] - with
the goal of detecting not only urban inventory but also
urban dynamics such as population density, building age,
crime rate, and noise pollution.

Our analysis in zero-shot and few-shot settings indicates
that VLMs have the potential to solve urban classification
and localization tasks. Simultaneously, they have a surpris-
ingly good understanding of some abstract phenomena but
completely fail to identify others.

1. Introduction
Recent developments in 3D scene representation, in-

cluding Vision-Language Models (VLM), Neural Radiance
Fields (NERF), and Gaussian Splatting, have significantly
advanced open-set inference capabilities. However, these
methods have predominately been evaluated in closed in-
door environments, such as OpenScene [8], OpenMask3D
[14], LangSplat [10], and LERF [6], which limits their ap-
plicability to the complexities of urban landscapes.

The city scale introduces unique challenges due to its
scale and dynamic nature, that render existing methods less
effective. Many dense reconstruction techniques are too ex-
pensive to run on such a scale. Understanding urban dynam-
ics - ranging from the age of buildings to population density
and crime rates - is crucial for urban planning and develop-
ment. Despite their limitations, these methods offer valu-
able insights into urban dynamics, providing a foundation
for improving urban living conditions and sustainability.

In this study, we extend these methodologies to operate
effectively at the city scale. We introduce OpenCity as our
approach that involves utilizing Google Earth mesh data and

generating an embedded point cloud using rendered RGB-
D images, inspired by the feature extraction procedures of
LangSplat. By leveraging language encoders, we query this
embedded point cloud to analyze the information content of
embeddings related to tangible urban objects such as build-
ings and dynamic urban phenomena like population density
and crime rates.

Our findings indicate promising results in urban inven-
tory localization segmentation, particularly for identifying
building ages and population density, improving upon the
capabilities of LangSplats features. While initial findings
for crime rate and noise emission prediction are less robust,
our methodology demonstrates the potential for comprehen-
sive urban analysis and planning.

This report details our methodology, findings, and im-
plications for advancing 3D scene understanding on a city
scale, offering insights into leveraging advanced computa-
tional methods for urban research and development.

2. Related work
Several recent studies have explored advanced tech-

niques in 3D scene understanding and instance segmenta-
tion. Peng et al. [8] introduced a method that assigns per-
point features to point clouds, followed by a multi-view fea-
ture fusion using CLIP features [11]. Their approach, Open-
Scence, supports open-vocabulary queries but faces chal-
lenges in achieving sharp segmentation.

Another notable advancement is OpenMask3D [14], de-
signed specifically for open-vocabulary 3D instance seg-
mentation. OpenMask3D is a method that leverages CLIP
embeddings to extend Mask3D [13], a model for 3D seman-
tic instance segmentation, on an open vocabulary. To do so
it uses SAM [7] masks from posed RGB-D images of the
scene to obtain CLIP embeddings that are then assigned to
Mask3D masks in 3D space, embeddings that can be then
compared to the ones from open vocabulary queries.

A significant strength of OpenMask3D is the fact that it
reasons at the mask level (instead of point-wise) which mas-
sively improves efficiency and storage usage, both impor-
tant factors for scalability. This would make it a perfectly
suited candidate for large urban scene representations.
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Figure 1: OpenCity zero shot pipeline. a] To prepare a city scene the point-cloud and RGB-D renderings are generated from
the source mesh; highlighted masks are then extracted from the image using SAM [7] and are used to get visual language
features using SigLIP [15] that can be combined with the point cloud. b] For the zero-shot approach the feature-embedded
point cloud is compared to open vocabulary text embeddings and the similarity scores can be displayed on the point-cloud as
an heat-map

However, preliminary experiments reveal that its seg-
mentation model (Mask3D) is unable to generalize to our
city scenes, which we believe to be out-of-distribution re-
garding Mask3D’s training data. Alternative segmentation
models such as Segment3D [5] did not remedy the situation.
An example of Mask3D segmentation on an urban scene is
displayed in Figure 2, and a more thorough report of our
experiments is provided in the appendix.

Kerr et al. [6] proposed the Language-Enhanced Render-
ing Function (LERF), a 3D Neural Radiance Field (NERF)
model. LERF integrates language features by learning a
language field from 2D CLIP features analogously to how
NERFs learn color fields, enabling real-time querying and
rendering capabilities.

LangSplat [10], on the other hand, combines 3D Gaus-
sian Splatting with language features extracted using Seg-
ment Anything Model (SAM) techniques. This hybrid ap-
proach hierarchically crops parts of images and feels them
into CLIP, compressing resulting features with an auto-
encoder. The efficacy of LangSplat lies in its optimization
of language features through rendered comparisons with
CLIP features.
However, scaling Gaussian Splatting to large urban scenes
is an active research area in its own right. Also, LangSplat
requires feature compression to seven dimensions or less
out of memory constraints. This is undesirable for the nu-
anced analysis of social dynamics we want to perform.

In our approach, we adapt LangSplat’s hierarchical fea-
ture extraction with OpenScene’s point cloud-based scene
representation. Using a sparse scene model instead of Gaus-
sian Splatting enables us to analyze the full, uncompressed

Figure 2: Unsatisfying segmentation result of Mask3D on
an urban scene.

features at the cost of accurate geometries.
We furthermore experiment with SigLIP [15] as a re-

placement for CLIP as a VLM backbone. SigLip is a mod-
ification of CLIP, utilizing a Sigmoid loss instead of a soft-
max for pairwise language-image pre-training.

3. Method
3.1. City scene preparation

As data source we have 3D meshes obtained from google
earth [1] and we want to obtain a corresponding point cloud
with language features attached. To do so we first gen-
erate RGB and depth images of the city by rendering the
mesh from multiple perspectives scanning the whole mesh.



In particular we generate 3 classes of images: satellite-like
were the camera is set up in the air looking vertical, aerial
where the camera is set a little above the buildings looking
between 30 and 60 degrees and street view where the cam-
era is a couple of meters over the points looking horizontal.

We then used SAM [7] on the RGB images using 4 hi-
erarchies since it has excellent performance in segmenting
2D images. For each obtained segment we cut out a corre-
sponding image patch, in which we highlight the segmented
area. Highlighting is performed by partially whitening out
the non-segmented area and marking the border of the seg-
ment with a red line. Refer to Figure 3 for a visualization.
Since most segments only cover a handful of pixels we only
retain the ones covering at least 0.25% of the image. This
leads to the removal of roughly 60% of all segments. We
also add the embedding of the entire image as a 5-th hierar-
chy.

Finally, we run each of the highlighted segment images
through SigLIP to get one embedding per segment.

Note that our feature extraction pipeline is identical to
LangSplat’s with three major differences. Firstly, we do
not completely cut out each segment but instead present it
highlighted in its original context, as we found that shape-
less urban structures are otherwise hard to identify even for
humans. Secondly, we use SigLIP instead of CLIP as an
embedding model. Thirdly, we have one more hierarchy:
the coarsest one.

To project the 2D features to 3D, we average the embed-
dings of all segments in which the relevant point was ob-
served. This results in a point cloud where each point has a
SigLIP embedding attached, which we can use for prompt-
based interaction.

An illustration of the pipeline can be seen in Figure 1.a.

Figure 3: Example of segmented RGB image with highlight

3.2. Language-guided zero-shot Scene Interaction

Based on this enriched point cloud of a city scene it
is possible to infer point-wise similarity scores to a given
prompt by using the text embedding ϕquery obtained from
the SigLIP text encoder. We follow LangSplat in this re-
gard and compute the dot product between the point and
the prompt embedding, optionally contrasted with negative
queries:

ŝimquery, point = max
l∈Levels

exp(ϕT
queryϕ

l
point)

simquery, point =
ŝimquery, point

ŝimquery, point +
∑

n∈Negatives ŝimn, point

Similarity scores can be rendered as a heat map for vi-
sualization, as illustrated in Figure 1.b, or projected to 2D
to be correlated with ground truth map data. However, they
only provide relative estimates between zero and one. To
perform actual regression, we use nearest-neighbor classi-
fiers as described below.

3.3. Few-shot learning by KNN Regression

Alternatively, the point embeddings can be used as fea-
tures for few-shot learning. To that end, we assume we have
ground truth data for a part of the scene and construct a K-
Nearest-Neighbors (KNN) regressor from it, which we then
use to perform inference on points from unseen parts.

Notably, we perform the train/test split at the coarse
granularity of regions (houses, neighborhoods, roads, etc.)
but otherwise operate on the finer granularity of single
points and their embeddings.

The number of neighbors was set to 50, each equally
weighted and selected with respect to cosine similarity.

4. Datasets

Three scenes were extracted from locations chosen based
on the availability of ground-truth data and 3D meshes.

4.1. Rotterdam and Amsterdam

We extract Google Earth [1] meshes for the Dutch cities
Rotterdam and Amsterdam, each covering 1-2km2. They
feature the Rotterdam University and the Amsterdam Cen-
tral train station area, respectively.

Corresponding ground-truth data was taken from the 3D
BAG API [9], which provides among other things 2D build-
ing footprints and associated construction years as given by
the cadastre for the entire Netherlands. To the best of our
knowledge, this database is unique in its granularity and
size, providing valuable ground truth data for an interest-
ing prediction task.



4.2. Buenos Aires

We extract one larger scene of roughly 4km2 covering
the Buenos Aires city center. Along with it, we use of-
ficial records from the Autonomous City of Buenos Aires
(CABA) of population count [2], crime records [3], and ur-
ban noise emissions. [4]

Population density: We directly compute the density by
dividing the number of residents by the area at the granular-
ity of neighborhoods. The data is from the years 2015-2018.

Crime rate: CABA provides locations and descriptions
of all recorded crimes between 2016 and 2022 [3]. We re-
move any crimes that do not involve a weapon to exclude
incidents that are not necessarily tied to a location, such as
tax evasion or fraud, and lighter offenses such as traffic in-
cidents. This leaves us with a dataset of 2146 out of 32609
crimes within the selected area. To avoid artifacts at region
boundaries and attenuate sparsity effects, we consider each
crime a 2D Gaussian distribution with a standard deviation
of 50m. Then we sample from it to compute the expected
number of annual armed crimes per square kilometer and
neighborhood.

We point out that this does not correspond directly to
the actual crime rate, but rather represents an indicator of
danger, which we believe to be a more sensible quantity to
predict.

Noise Pollution: The CABA noise emission dataset [4]
provides a map of estimated average daytime noise along
major city roads. It divides the roads into twelve linearly
spaced noise intervals based on estimated noise in decibels.
To compute meaningful correlations, we take the mean of
each interval as the ground truth value.

A visualization of the extracted area and its core charac-
teristics can be found in the appendix. Also note that only
the coarsest feature level of this scene is processed, as we
are most interested in information whose geometrical scale
matches the scale of the available ground-truth data.

5. Experiments
5.1. Building segmentation

Given the point cloud with associated features, we per-
form zero-shot classification of the points into the classes
building and background. We use building as a positive
query and a set of canonical queries representing common
urban objects (listed in the appendix). The resulting simi-
larity score is interpreted as a probability. The scores are
then projected onto a 2D plane and interpolated linearly to
a regular grid to avoid edge artifacts. We then assign each
point its ground-truth label based on the 3D BAG dataset.

We find that this classifier attains an ROC-AUC score of
0.927 in Rotterdam, accompanied by an accuracy of 87.5%
given an appropriately chosen threshold. This is a signif-
icant improvement compared to LangSplat-style features

Figure 4: Zero-shot building segmentation results based on
OpenCity features (black) and LangSplat features (red).

projected to the same point cloud. The latter achieves only
up to 79.8% accuracy with a ROC-AUC of 0.862, as visual-
ized in Figure 4.

5.2. Building Age

Given the point cloud and point embeddings, we predict
the construction year of Dutch buildings in a zero-shot set-
ting. We predict age scores by feeding the positive prompt
modern building contrasted with the negative old building.
Then we again project the points to two dimensions and re-
sample them to a regular grid. Each point within a building
is then assigned a ground truth construction year, all other
points are omitted.

The Spearman correlation between the age scores and
the construction year is 0.507 for the Amsterdam scene, and
0.556 for the Rotterdam one.

To emulate a few-shot setting, we furthermore split the
buildings into 30% training and 70% validation samples to
train a KNN classifier for each city as described above on
the embeddings. This results in a higher correlation of 0.73
and an R2 score of 0.51 for the Rotterdam scene. For Ams-
terdam, the correlation increases to 0.53 but the R2 score is
very low at 0.05.

We furthermore find that OpenCity outperforms
LangSplat-style features, which achieve lower correlation
on the task. Refer to table 1 for a summary.

5.3. Population Density

Given the embedded point cloud, we aim to predict the
population density in Buenos Aires in a zero-shot setting.

We build an indicator using the positive prompts densely
populated area, and strongly populated district. As nega-
tives, we choose loosely populated area, and unpopulated
area.

Once again, we project the points to two dimensions,



Figure 5: Result of the building age prediction of OpenCity. Prediction on the left, ground truth of Rotterdam on the right.

Table 1: Comparison of various feature extraction methods
evaluated on the Rotterdam Scene. For LangSplat, the un-
compressed, point-projected features were evaluated. The
best results are highlighted.

Method Age Correlation
Building seg.
max accuracy

LangSplat 0.394 79.8
OpenCity (prompt) 0.556 87.7
OpenCity (KNN) 0.733 N/A

Table 2: OpenCity result summary for various prediction
tasks on the Buenos Aires scene.

Task
Prompted

(Spearman)
KNN

(Spearman)
KNN

(R2 score)
Population
Density 0.63 0.61 0.29

Crime Rate 0.42 0.61 0.18
Noise Level 0.19 0.50 0.11

resample them to a regular grid, and assign them the
ground truth value taken from the CABA records. We
find that the indicator yields a Spearman correlation of
0.625. The model correctly identifies the population clus-
ter in the north-western section (see appendix for visual-
ization). However, it erroneously assigns comparably high
scores to the city center south of the train station. It also
over-estimates the population in the industrial port area to
the northeast.

The latter can be improved by adding prior information
to the model. With the two additional negatives nature and

industrial area, the correlation is boosted to 0.753. We hy-
pothesize that this effect is due to the ambiguity of the term
dense population in the context of an image of a natural
shoreline or a container ship.

We again evaluate the features in a few-shot setting by
using 28 training and 94 validation neighborhoods to train a
KNN classifier. This results in a similar correlation of 0.61
and an R2 score of 0.29.

5.4. Crime Rate

We use our embeddings to predict the expected number
of crimes per square meter in the city of Buenos Aires.

The used prompt consists of the positive query dan-
gerous neighborhood and the negative safe neighborhood.
Using this indicator, we obtain a Spearman correlation of
0.301.

The task mainly consists of identifying the port-facing
side of the north-western district as a dangerous area. For
a visualization refer to the appendix. Notably, the model
again assigns high danger scores to the port as well as the
park to the southeast. We can once again include prior
knowledge to increase the correlation to 0.422 by adding
nature as a negative prompt. In this case, however, this prior
is less easily justified, as large city parks do not generally
come with lower crime rates - though the mere absence of
people may indicate such a tendency.

When evaluated in the aforementioned few-shot setting,
KNN classification results in a correlation of 0.61 and an R2
score of 0.18, indicating that the information is only repre-
sented in the features to a limited extent.

5.5. Noise Emissions

We follow the same approach to predict urban noise lev-
els as given by the City of Buenos Aires, using noisy ur-



Figure 6: Showcase of difficulty of determining the age of
houses using low-resolution images. The building on the
left is from 1907 and the right one is from 1997. They are
from the scene of Rotterdam.

ban area as positive, contrasted with quiet area as negative.
This gives us a weak Spearman correlation of 0.19. Visual
results are again presented in the appendix.

In the few-shot setting, we use roughly a third of the ar-
eas (207 out of 691) as training data for the KNN classifier.
This yields a moderate correlation of 0.500 and a low R2
score of 0.11.

6. Discussion
The OpenCity framework has demonstrated significant

potential in advancing the understanding of complex ur-
ban environments through 3D scene understanding com-
bined with language embeddings. It provides a proof-of-
concept for image-based understanding of urban dynamics
at a larger scale, which we believe to be an interesting future
research topic.

6.1. Building Age and Segmentation

The OpenCity framework has demonstrated significant
potential in advancing the understanding of complex urban
environments through 3D scene understanding. The new
features outclassed the LangSplat features by a large mar-
gin. The method is able to differentiate regions with more
modern architecture from more traditional areas as can be
seen in Figure 5. The method has a harder time differentiat-
ing newer houses from older ones if they are in a dense clus-
ter together. This is not necessarily an issue of the method,
but can also be a problem with the data. Often newer houses
are built to match the style of the preexisting neighborhood,
as seen in the example shown in Figure 6.

6.2. Population Density Estimation

Our framework has shown reasonable results in estimat-
ing population densities. This outcome is expected given
the nature of the corresponding urban features—where the
number and size of residential buildings often have a very
clear influence on the population density.

6.3. Crime Rate and Noise Level Prediction

The difficulty in predicting crime rates and noise levels
from 3D data illustrates the complexity of urban dynamics,
where many influential factors are not immediately visible
or quantifiable through spatial analysis. This finding indi-
cates the need for a more nuanced approach that incorpo-
rates a broader range of data types. Having reference val-
ues, like in the KNN version, greatly increased the quality
of the results, especially for noise levels.

7. Limitations
An overarching issue in the area of large-scale outdoor

open vocabulary methods is the lack of benchmarks and
datasets. Most of the field focuses on smaller areas, mostly
inside buildings. As a consequence of that, one is forced
to find problems to solve for which data is available, mak-
ing the generalizability of the results an open question. We
hope in the future, more benchmarks will be published.

Due to limited time and computational resources, the ex-
periments are not as extensive as they could have been. In
particular, our experiments have not made clear how much
of the gain over LangSplat is obtained by using SigLIP in-
stead of CLIP.

Also note that this approach was developed as a simple,
exact-as-possible method to analyze the information con-
tent of VLM features. The scalability of the method is lim-
ited by the memory and storage taken up by storing the full
point features, as we - unlike other methods - do not use
compression.

8. Conclusion
We adapt existing methodologies to analyze city-scale

datasets, focusing on detecting urban characteristics such
as population density, building age, crime rate, and noise
pollution. Our findings suggest that VLMs exhibit signifi-
cant potential in urban scene understanding. By extending
these techniques on a city scale, we introduce OpenCity,
which utilizes Google Earth mesh data to generate an em-
bedded point cloud via rendered RGB-D images. This al-
lows for a comprehensive analysis of urban dynamics, en-
hancing our understanding of the city. Although predictions
for crime rates and noise emissions remain less robust, our
approach demonstrates considerable promise for advancing
urban analysis efforts.
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Appendix

Figure 7: Result of the building age prediction of OpenCity. Prediction on the left, ground truth of Amsterdam on the right.

Figure 8: Prediction result (left) vs. ground truth (right) of the building age prediction of Rotterdam using LangSplat.

Analysis of OpenMask3D for urban point clouds
OpenMask3D [14] is a method that leverages CLIP [11] embeddings to extend Mask3D [13], a model for 3D semantic

instance segmentation, on an open vocabulary. To do so it uses SAM [7] masks from posed RGB-D images of the scene to
obtain CLIP embeddings that are then assigned to Mask3D masks in 3D space, embeddings that can be then compared to
the ones from open vocabulary queries. A significant strength of OpenMask3D is the fact that it reasons at the mask level
(instead of point-wise) which massively improves efficiency and storage usage, both important factors for scalability.

While we did try to use this approach on a city scale it unfortunately fails because one of the backbones: Mask3D, isn’t
able to generalize to city data. Mask3D is pre-trained on ScanNet200 [12] which is highly detailed and diverse for indoor
scenes thus making it a good fit for OpenMask3D experiments, but on city scale data it fails at generating any meaningful
masks. We also try to use a Mask3D model trained on STPLS3D [5], a synthetic urban dataset, and use Segment3D [5], an
alternative to Mask3D, but with no good results.

Negative Prompts used for Building Segmentation
We use the positive prompt ”building” against the empirically chosen negatives ”tree”, ”road”, ”park”, ”river”, ”car”, ”sea

/ lake / canal”, ”urban scene”, ”parking lot”, and ”city”.
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Figure 9: Prediction (left) vs. ground truth (right) population density in Buenos Aires.

Figure 10: Predicted building probabilities of OpenCity (left) vs. ground truth (right) building outlines of the Rotterdam
scene



Figure 11: Illustration of the Buenos Aires extract. Most notably, we have the Barrio 31, a villa miseria (slum) in the
northwest. East of it is a large industrial port. In the center is the train station with tracks going north-west. South of them is
what is commonly considered the city center.
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Figure 12: Prediction (left) vs. ground truth (right) crime occurrence in Buenos Aires.
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Figure 13: Prediction (left) vs. ground truth (right) urban noise level in Buenos Aires.


