
 

 

 

ERG2050 Final Project: Binary Sentiment 

Analysis 

 
Passionate ERG Lovers 

Hailu, CHEN 119010013 

Hanfei, ZHU 119020585 

Jingyuan, YANG 119010380 

Mengjie, CHEN 11901020 

Qingxuan, CHEN 119010024 

Shuyu, HUANG 119010111 

Tianyuan, XIE 119010352 

Yiling, KUANG 119010139 

Yixun, CHEN 119010038 

Yongjia, HENG 119010100 

   

The Chinese University of Hong Kong, Shenzhen 

  
  

 

  



Content 

I. Motivation 

 

II. Preprocessing: get the vector for each comment 

Model overview:   
1. TF-IDF, hash 
2. Word2vec, glove 
3. Bert  

Each part:  
1. Principle  
2. Code (2.1 package 2.2 process 2.3 parameter fitting) 
 

III. The model of classification 

Model overview: 
1. Dictionary based word-Level Sentiment analysis 
2. KNN, Logistic  
3. SVM, Naive Bayes 
4. Neural Network (NN, LSTM, biLSTM) 

 

IV. Model combination and implementation 

V. Conclusion 

VI. Distribution  

 

  



I. Motivation 

This project requires us to use provided 25k train sets, which are split into positive 
review and negative review, to determine whether each comment in test set is positive or 
negative comments.  

The problem can be composed of 3 subproblems: selecting appropriate feature functions 
to represent input x, building effective and efficient models (classifier), and using the 
classifies to predict positive or negative sentiment. By analyzing these subproblems, our 
group conclude several properties that the feature functions, models should have in advance: 
Feature function:  

It should be able to convert each comment (original text) into a feature vector. 
It should be able to handle unseen words, misspelled words in the test data. 
It cannot use too many features so that NumPy cannot handle. 
The algorithm for deriving the feature function does not require GPU or TPU. 

Model: 
It should be able to output binary value, which represent positive and negative sentiment, 

or it should be able to classify data into 2 categories. 
It should be able to handle numerous data, since some comments are long. 
Based on these motivations, we select 4 feature functions, which are TF-IDF, 

word2vector, glove, and Bert. We also select 8 models, which are dictionary-based sentiment 
analysis, logistic regression, kNN, SVM, NaiveBayes, LSTM, biLSTM, and Neural Network. 
For feature functions, all 4 features can convert each comment (original text) into a feature 
vector. Moreover, word2vector, glove, and Bert are designed for natural language processing. 
 These 3 feature functions can convert each word into a vector so that a whole comment is 
represented by a matrix with each row as a word vector. 

For models, they are all able to make binary decisions. Even when part of the output 
value is continuous value, it is possible to use sigmoid function to convert it into a number 
between 0 and 1. They can handle large dataset to compute predictions. The innovation in our 
group is that we try different combinations between all feature functions and models. First, we 
derive the feature vector for each comment, then we apply it to model that can handle these 
feature vector in order to derive a training model.  

 

  



II. Preprocessing: get the vector for each comment 

Model overview:   
4. TF-IDF, hash 
5. Word2vec, glove 
6. Bert  

Each part:  
1. Principle  
2. Code (2.1 package 2.2 process 2.3 parameter fitting) 
 

Tf-idf 
1. Principle 

TF-IDF is a measure that represent the words into vectors. It is done simply by 
multiplying term frequency and the inverse documents frequency. It works by increasing 
proportionally to the number of times a word appears in a document but is offset by the 
number of documents that contain the word. Because if certain words appear in too many 
documents, then it becomes less important.  

tf(t,d) is term frequency, i.e. the count of a term in a document.  

𝑡𝑓(𝑡, 𝑑) =
𝑓!,#
∑

!$∈
!
&"#,!

 

idf(t,D) is inverse document frequency, obtained by the following formula  

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}| + 1
	

	
where 
N is the total number of documents in the corpus. and the denominator is the number of 
documents where the word appears.  To avoid the case that the denominator goes to 0, we 
simply plus 1. 
2. Code  
2.1 Package 

CountVectorizer" and "TfidfTransformer" from sklearn.fearure_extraction.text, this is 
two modules from sklearn to extract word vectors 

 

2.2 Process 
2.2.1 Read data 



 

2.2.2 use the package to generate tfidf vector 

 
2.3 parameter 

The parameter “max_features” of CountVectorize can be changed. Based on the result of 
combining tf-idf and naïve bayes, we selected the best number 3000 after trial and error. The 
process of selecting parameters would be represented on the last part of naïve bayes model.  
 

Hash  
1. Principle: 

It belongs to bag of words models. The bag-of-words model assumes that we do not 
consider the contextual relationship between words in the text, but only consider the weights 
of all words. The weight is related to the frequency of words in the text. 

It is similar to TF-IDF model, but it performs better when dealing with large number of 
words after tokenization. It uses hash trick to lower the dimension.  
   In Hash Trick, we will define the size of the hash table corresponding to a feature hash. 
The dimension of this hash table will be much smaller than the feature dimension of our 
vocabulary, so it can be regarded as dimensionality reduction. The specific method is to 
correspond to any feature name, we will use the Hash function to find the location of the 
corresponding hash table, and then accumulate the statistical value of the word frequency 
corresponding to the feature name to the location of the hash table. If expressed in 
mathematical language, if the hash function h makes the i-th feature hash to position j, that is, 
h(i)=j, then the word frequency value ϕ(i) of the i-th original feature will be added to the 



hashed on the word frequency value ϕ¯ of the j-th feature, that is: 

 
Here since there were 50000 comments, we tried hashing vectorizer to generate the vectors 

for a file. 
2. Code:  
2.1 Package: 
pandas: use data frame to store the data 
nltk: from Nltk.corpus import stopwords 
re: use re.sub and re.findall in tokenizer function to help tokenization 
sklearn.feature_extraction.text: import HashingVectorizer 
2.2 Process: 

 

 
1. We read the data from the files and restore them in a csv file. 
2. We read the data from csv file and separate them into texts and labels. 
3. We import the package from sklearn and initiate the hashingvectorizer object. 
4. We use the package to generate vectors for our texts. 
2.3 Parameter:  

n_features: it can be left at its default value (approximately one million), we set a number 
(3000000). We chose this number because it can give us relatively high accuracy and the run 
time is not too long.  

Tokenizer: remove stopwords, punctuation…… 

 
 

 
Word to Vector (Word2Vec) 

1. Principles 
Word2Vec is a method that represents a word by a vector that allows us to measure the 

relations between words. Traditionally, One-Hot encoding is used to encode the features of a 
word. The method has some shortcoming, for example, the feature matrix is sparse, and it 
assumes the independence between words. Word2Vec solves the problem using a neural 
network. 

There are two ways to accomplish the word to vector transformation. The first is 
Continuous Bag-Of-Words Model (CBOW) which inputs the 2t words nearby and output the 
target word.  



       
We want to learn the transformation matrices to maximize the log likelihood function of 

𝜔 that ∑𝑙𝑜𝑔	𝑝(𝜔|𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝜔)). The method is preferrable when training texts with smaller 
scales. 

The second way is skip-gram method, which is also used in the Word2Vec function in the 
Gensim module of Python. The skip-gram method requires an input word, and then it predicts 
the neighboring words. First, we need to define the scale of window W, which means there 
will be 2W words – W words before the input word and W words after it – in the window. 
Based on these vectors, the neural network will output a probability distribution that a word in 
the dictionary is the output word. Then, we should define the dimension (i.e., number of 
features) of the word vectors. Combining the vectors and back propagation, through gradient 
descent, the neural network gives us the embedded matrix. These vectors of words allow us to 
calculate the similarities and predict the contexts. 
 
2.  Code  
2.1 Packages 

Re: This module provides regular expression matching operations. With the embedded 
integration Re module, we can call directly to implement regular matching. In our program, re 
is mainly used in the tokenization of the sentences. 

Genism: Contains functions to transform documents (strings) into vectors and calculate 
similarities between documents. 

Genism.models: Contains algorithms for extracting document representations from their 
raw bag-of-word counts. 

From sklearn import svm: The module sklearn contains many machine-learning 
algorithms, including SVM. 
2.2 Process  

To get a matrix of word vectors, we first need to wipe the stop words and punctuations in 
the texts. We got a list of stop words in Python in-built library, and then tokenize the 
sentences after removing the stop words and punctuations.  
 
# Collect stopwords 
stop=[] 



with open('stopwords.txt','r') as f: 
    for line in f: 
        stop.append(line) 
 
# Transfer word to word vector 
def tokenizer(text): 
    text = re.sub('<[^>]*>', '', text) 
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower()) 
    text = re.sub('[\W]+', ' ', text.lower()) +\ 
        ' '.join(emoticons).replace('-', '') 
    tokenized = [w for w in text.split() if w not in stop] 
    return tokenized 
 

We defined a class csvStream which creates an iterable object of the texts. Using the 
object, we can easily apply the function of Word2Vec. We stored the matrix of word vector in 
a file named “outpath”. 
 
outpath = 'w2v_trainResult' 
train_model = gensim.models.Word2Vec(lineIterator, vector_size=vec_size, window=5, min_
count=mincount, workers=4, epochs=10) #  
train_model.save(outpath) 
 
2.3 Selecting Parameters 

Referring to the general solution, we determined the size of window to be 5. To decide the 
dimension of word vector, we need to balance between the accuracy and running time. We 
picked the multiplication of 10, from 150 to 300. We found little difference between the 
runtimes and accuracies under each parameter. Therefore, we chose 250 as the vector size. 

 
 
 

Glove 
1. Principle: 
Co-occurrence matrix: co-occurrence probabilities matrix can combine the overall statistics of 
corpus and the local contextual feature (sliding window). 
Xij = the number of Wordj appears in the context of wordi in Corpus 



Xi=∑kXik=the total number of words which appear in the context of wordi 
Pij=P(j/i)=Xij/Xi=the probability of wordj appearing in the context of wordi 
Ratio=Pik/Pjk. Ration can reflect the relevance of words as follow: 

 Wordj, wordk correlate Wordj, wordk are incorrelate 
Wordi, wordk correlate Ration≈1 Ratio is large 
Wordi, wordk is uncorrelate Ration is small Ration≈1 

In Glove model, we assume that the word vectors of wordi, wordj, wordk are wi, wj and 
wk. And the basic of the model is F(wi, wj, wk)=Pik/Pjk. The equality means the function of 
word vector contains the information of co-occurrence. So the aim of Glove model is to find 
F. 
2. Code  
2.1 Packages: 
Os: os.listdir(path): return the list of the files or folders contained in the specific folder 

os.path.join(path ,file): combine all files in the path 
Corpora: corpora.Dictionary (document, prune_at): document should be a document matrix; 

prune_at is used to control the total dimension of matrix. 
Pyprind: pyprind.ProgBar: return a visible progress bar 
Punctuation: contain all punctuation 
Numpy: np.zeros(shape, dtype=float, order=’C’): Returns a new array filled with 0 given the 

shape and type.  
GloVe: GloVe(n, max_iter, learning_rate): n: the length of matrix, max_iter: maximum 

number of iterations, learning_rate: the rate of learning 
GloVe.fit(matrix): return the glove matrix 

Nltk: Nltk is a natural semantic processing library in Python 
Stopwords: stopwords.words(‘english’): return stopwords in English 
Word_tokenize (sentence): return the tokenized copy of text 
Pos_tag: pos_tag(tokens): tag the given list of tokens 
WordNetLemmatizer: WordNetLemmatizer.lemmatize(word, pos): return the lemma of the 

input according to the pos. 
Re: re.sub(pattern, repl, string, count=0, flags=0): substitute regulation expression string 
Genism: is a simple and efficient Python library for natural language processing. The input of 

genism is original and unstructured digital text. The semantic structure of the 
document is automatically found by calculating the statistical co-occurrence 
patterns in the training corpus. 
gensim.models.KeyedVectors.load_word2vec_format(text): save text as the form  
of word2vec 

2.2 Process  
(1)Text collection: combine all text under pos folders and neg folders together.  



 
(2) Preprocess data:  

(a) Remove redundant blanks, tokenize words and tag words 

 
(b) Get the lemma of the input according to the tagged pos. 

 
(c) Remove stopwords (most common functional words), digits and punctuation. 

 

 
(d) Make all words lowercase. 



 
(3) Glove models: 

(a) Form co-occurrence matrix: co-occurrence probabilities matrix can combine the 
overall statistics of corpus and the local contextual feature (sliding window). 
Xi,j = the number of 𝑤𝑜𝑟𝑑' and 𝑤𝑜𝑟𝑑( appear in the same window (the length of 

window is set). Co-occurrence matrix is obtained by traversing the whole corpus. 
 

 
    
(b) Use GloVe package to input co-occurrence matrix and fit each word’s word vector. 
 

 
   (c) Save GloVe word vector into text. 
(4) Transform texts into feature vectors 
 Add up each word vector and use the average to represent the text’s feature vector. 



 
l Problems & Solutions: 

 In the process of applying GloVe package, there should form a 250934*250934 matrix 
and in this case, the window will automatically stop the process. So we try to solve the 
problem by cut down words. And to guarantee the accuracy, we choose to keep adjectives and 
adverbs. 

l Improvement (cut down words): 
Data preprocessing: 
Glove is a feature function which convert each word into a vector with dimension 1*100, 
which is store as a NumPy array vector. By using the glove vector as word representation, 
each comment can be represented by a matrix with 100 columns and word length as its row 
number. However, NumPy is unable to derive a matrix whose dimension is over 150000 and, 
training efficiency in this process is not guaranteed. Therefore, it is necessary to choose and 
select more important words that appear in the comments. 
Usually, it is natural for people to use adjective to express their sentiment. Our group select 5 
adjectives in each comment in order to reduce running time and let the training process 
become more efficient. Since the stop-words, punctuations and symbols have been removed 
by previous data cleaning (It is an object orientated programming.) This process includes 
tokenization and POS tagging. 
 
l Sentence tokenization: Our group uses nltk python packages to tokenize the comments. 

Then our group uses a list in order to store all the words in one comment. In our code, 
the command is  
text_list = nltk.word_tokenize(text) 

l POS tagging: POS tagging is also called part-of speech-tagging. It gives back the part of 
speech of each word in individual sentence.  
For example, text = nltk.word_tokenize("And now for something completely different") 
nltk.pos_tag(text) 
  [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), 
  ('completely', 'RB'), ('different', 'JJ')] 
After tagging each comment, we select words with “JJ” because it represents adjective. 
Then we the outcome of POS tagging into NumPy array and select only the first column, 
which includes all the adjective word. For previous example, the word that will be 
selected is ‘different’. In the end, we store the first 5 adjective in a list and write it into a 
txt file for further use. The reason why we use a txt file to store is it takes some time to 



run this program and inherit a txt file will be much more efficient. 
The final file we write is like: 

 
 

BERT 
1. Principle 

Masked Language Model 𝐵𝐸𝑅𝑇)*+,: L=12，H=768，A=12. (length of each vector is 
768) 
In BERT, 15%WordPiece Token will be randomly masked. When training the model, each 
sentence will be learnt multiple times. Tokens are not always masked. There are probabilities. 
80%：my dog is hairy -> my dog is [mask] 
10%：my dog is hairy -> my dog is apple 
10%：my dog is hairy -> my dog is hairy 

We split each word in the sentence, and create a token dictionary, find the corresponding 
number in the exist tokenizer dictionary. 
 
2. Code  
2.1 Package: 

BertEmbedding 
class BertEmbedding(ctx=mx.cpu(), dtype='float32', model='bert_12_768_12', 
dataset_name='book_corpus_wiki_en_uncased', params_path=None, max_seq_length=25, 
batch_size=256) 
Encoding from BERT model. 

Parameters 
(ctx : Context. running BertEmbedding on which gpu device id. Dtype: str data type to use for 
the model. Model: str, default bert_12_768_12. pre-trained BERT model dataset_name: str, 
default book_corpus_wiki_en_uncased. pre-trained model dataset params_path: str, default 
None path to a parameters file to load instead of the pretrained model. Max_seq_length : int, 
defaultmax length of each sequence batch_size : int, default 256 batch size 

os 
OS routines for NT or Posix depending on what system we're on. 
Programs that import and use 'os' stand a better chance of being portable between different 
platforms. Of course, they must then only use functions that are defined by all platforms (e.g., 
unlink and opendir), and leave all pathname manipulation to os.path (e.g., split and join). 
2.2 Process 
• For each sentence in the train and test file, we use BertEmbedding to get the word vector. 
• Similar to SVM, we adjust the parameters to fit the situation of sentences in the train file. 
• Finally we find a line that could divide those views in the test file into two classes. 
 
 



 
 

III. The model of classification 
Model overview: 

1. Dictionary based word-Level Sentiment analysis 
2. KNN, Logistic  
3. SVM, Naive Bayes 
4. Neural Network (NN, LSTM, biLSTM) 

 
Dictionary based word-Level Sentiment analysis 

1. Principle 
In the word-based approach the criterion for selection a tweet to automatic classification 

is the presence of words that express sentiment such as good, bad, excellent or terrible. From 
these words it is possible to infer the sentiment present in the text. These words are used to 
determine the sentiment (positive and negative) according to the application. This is the 
simplest form of sentiment analysis and it is assumed that the word contains an opinion on 
one main object expressed by the author of the document. In this approach people assign 
scores directly to words. We call these prior polarities, i.e., polarities of the words 
independent of their context (and thus their meaning). 

Algorithm: 

 
2. Code 
2.1 package 



Os, NLTK, re, collections 
re: Python package provides regular expression matching operations. Both patterns and 

strings to be searched can be Unicode strings (str) as well as 8-bit strings (bytes). Unicode 
strings and 8-bit strings cannot be mixed, in other words, it is impossible to match a Unicode 
string with a byte pattern or vice-versa; similarly, when asking for a substitution, the 
replacement string must be of the same type as both the pattern and the search string. 

collections: Collections is a specialized container datatypes providing alternatives to 
Python’s general purpose built-in containers, dict, list, set, and tuple. It is a useful data frame 
to store the occurrence of certain strings. 

nltk: nltk is a leading platform for building Python programs to work with human 
language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such 
as WordNet, along with a suite of text processing libraries for classification, tokenization, 
stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP 
libraries, and an active discussion forum.Emotion dictionary for sentiment analysis. 
2.2 Process  
2.2.1 Preprocessing 

This process includes sentence tokenization and stop words removal. Python NLTK 
packages provide built in method for users to perform sentence tokenization, stop words 
removal, and punctuation removal. 
1) For sentence tokenization, nltk.word_tokenize(sentence) can split a string into different 

pieces and include them in a list. For example, the output of nltk.word_tokenize(At eight 
o'clock on Thursday morning, Arthur didn't feel very good.) is ['At', 'eight', "o'clock", 
'on', 'Thursday', ‘morning','Arthur', 'did', "n't", 'feel', 'very', 'good', ‘.’]. Using this method, 
the comments about movies can be tokenized.  

2) For stop words removal, we use built in stop-words dictionary. First we use set() function 
to create a set of all the words in each comment and create another set of stop-words of 
the built-in stop-words dictionary. Then, it is desire to compare these 2 sets in order to 
remove all the overlapping stop words in the comments.  

3) For punctuation removal, we create a list which includes all the possible punctuation in 
English, including all the possible symbols that are irrelevant to sentiment analysis. For 
instance, $, %, @, etc. For python, the operation ‘not in’ require the computer to select 
these strings that are not in the punctuation list. In this way, we will be able to remove all 
the punctuations and irrelevant symbols out of the comments. 

2.2.2 Training process 
 The classifier is the 2 dictionaries of portage sentiment words and negative sentiments 
words. However, the sentiment dictionary is downloaded from the Internet. Previous studies 
have already collected frequently used polar sentiment words and select all the synonym of 
these word in the English words. In all, there’s are 4783 negative sentiment words and 2006 
positive sentiment words. Previous studies have collected the popularized version of English 
that people used on social media, such as “lol”, “hhhhh” and other kinds of words. The only 
step in the training process is to load those 2 sentiment dictionaries. 
2.2.3 Testing process 
 The classifier from the training process and the preprocessed test data are recognized as 
inputs in the testing process. Each appearance in the positive sentiment dictionary is assigned 

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple
http://nltk.org/nltk_data/
http://groups.google.com/group/nltk-users


1 score. Similarly, each appearance in the negative sentiment dictionary is assigned -1 score. 
After looping through all the words in each comment, we calculate the overall sentiment score 
of each comment. If the overall sentiment score is above 0, then we classify this comment as 
positive, otherwise, we classify it as negative. If the overall sentiment score is exactly 0, 
which means that no sentiment words appear in this comment, we randomly select a label for 
this comment.  
2.3 Result & Analysis 
 The accuracy of the word-level sentiment analysis is not satisfying the overall accuracy 
of all the comments in the test data is 52%. We analyze several for this unpleasant result: 
 The word-level sentiment analysis regards each word individually, rather than looking at 
the context of each word. This implicit assumption, in fact violates the natural property of 
language using. 
 Moreover, there are several emphasizing words, transition word that convey several 
messages about the sentiment of the people online. For example, the word ‘however’ clearly 
indicates that the sentences coming after will be more important. For instance, I was happy 
and willing to see this movie at the very beginning, however, I hate the characters in the 
movie. The word level sentiment analysis cannot classify this comment with robust 
prediction. 
 The dictionary may not be enough for computer to analyze all the comments. Several 
words may work together to express polar sentiment. Individual word sentiment analysis may 
not be able to handle cases like these. 
 
2. KNN, Logistic 

KNN 
1. Principle 
1.1 The Algorithm 
For the new test instance Xu, the following steps should be taken to determine its label. 
• Determine parameter K  
• Calculate the distance between the test instance Xu and all the training instances 
• Sort the distances and determine K nearest neighbors 
• Gather the labels of the K nearest neighbors (e.g., 4*w1,1*w3) 
• Use simple majority voting or weighted voting 

 
 
1.2 Properties 
• A “lazy” classifier (cluster).  



• No learning in the training stage  
• Feature selection and distance measure are crucial 
 
2. Code 
2.1 Packages: 
module gensim 
This package contains functionality to transform documents (strings) into vectors and 
calculate similarities between documents. 
module sklearn.neighbors 
sklearn.neighbors module implements the k-nearest neighbors algorithm. 
2.2 process 
• Split the data into training data, test data (by the given file: train&test) 
• Record instances as feature vectors 
• For each data d in the test file 
• Find k training instances (in the train  file) that are closest to d 

 

2.3 Model 
KNeighborsClassifier (n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, 
p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs) 
Parameters: 
n_neighbors: because we want to classify the data into two classes (positive and negative), we 
choose n_neighbor=2. 
Weights:  
‘uniform’: uniform weights. All points in each neighborhood are weighted equally. 

Accuracy = 55.0266%, time=135.08s 
‘distance’: weight points by the inverse of their distance. in this case, closer neighbors of a 
query point will have a greater influence than neighbors which are further away. 

Accuracy = 68.03%, time=297.24s 
So we choose weights= “distance” 
 

Logistic 
1. Principle 
Task: Given an x (continuous), decide its label y (binary) 
Data: 

x: the thing to be labeled/regressed (a vector) 
y: the continuous value in the real axis (class: 0 or 1) 

Regression process: 



 

 
Loss function: (maximum likelihood function) 

 

Usually, we consider minimizing the negative log-likelihood 

 
Then the algorithm uses different optimization methods, like Newton’s method to get the 
maximum-likelihood estimate βˆML.  

Training stage: given a set of n data points in S = {(y1, x1),(y2, x2), ...,(yn, xn)}, we fit the 
model parameters β and obtain the maximum-likelihood estimate βˆML. 
Regularization: Previously, we minimize the cost term 𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐽(𝑤)  

Now, we minimize the sum of the cost term and the regularization term  
𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝐽 𝑤 + Ω(𝑤) 

L2 Regularization:  

L1 Regularization:  

By minimizing it, we force the parameters to small values to make the model simpler. 
Test phase: given a novel input x∗, we desire an accurate prediction on the probability of having 
“0” or “1” based on the trained logistic regression model. 
2. Code 
 We use the package of logistic regression from sklearn. And we adjust two parameters. 



 
C: float, optional (default=1.0) 
Inverse of regularization strength; must be a positive float. Smaller values specify stronger 
regularization. 
tol: The error range of the iterative termination criterion. 
 
3. SVM, Naive Bayes 

SVM 
1. Principle 

A support vector machine (SVM) is a supervised machine learning model that uses 
classification algorithms for two-group classification problems. After giving an SVM model 
sets of labeled training data for each category, they are able to categorize new text. 

It is given a training data-set of n points and each data is represented as a vector of the 
form (x1,y1), … , (xn,yn). The xi are features of the data, and each data can have more than 
one feature. And yi are either 1 or −1, each indicating the class to which the point xi  belongs. 
And those n points can be divided into two groups by a hyper plane. Any hyperplane can be 
written as the set of points x satisfying w-x − b = 0. There can be many hyper planes that 
can divided those points, but there is only one maximum spacing hyper plane. To find the 
maximum spacing hyper plane, the points closest to the line from both the classes are needed 
to be found, which are called support vectors. Then the distance between the line and the 
support vectors, which is called the margin needs to be maximized. The hyper plane for which 
the margin is maximum is the maximum spacing hyper plane according to the SVM 
algorithm.  

The maximum spacing hyper plane can help prediction. With the xi of points that need to 
be predicted, the distance between the line and the points can be computed. And the 
predicting labels can be determined by the distance.  

2. Code  

Python has a specific package to train a SVM model for classification, and also predict 
the labels for the test data, which is called Sklearn.svm. To obtain the SVM model and use it 
to predict the emotional orientation of film reviews, a svm model need to be built first by 
using svm.SVC(). Then, the package can automatically get a smv model by fit(). Finally, the 
model can be used to predict the labels of the testing data by predict().  

The input of the fit() should be should be the vector representation and labels of the 
training data. The vector representation of the training data is a sparse matrix of shape 
(n_samples, n_features), where n_samples is the number of samples and n_features is the 
number of features.  

 
4.Neural Network (NN, LSTM, biLSTM) 
1. data processing 
1.1 Load data 

First, we load the data. Since the data set is not an organized csv file, but each record is a 
txt file, we traverse the corresponding folder to read in the data and get the corresponding 
label. 
1.2 Preliminary data processing 
(A) token 

For each data record obtained, we cannot directly judge the original data. We first 

http://www.monkeylearn.com/machine-learning/
https://en.wikipedia.org/wiki/Hyperplane


perform word segmentation and divide each record into tokens, which are the units of model 
processing. 
(b) stop words  

Human language contains many functional words. Compared with other words, function 
words have no practical meaning. The most common functional words are qualifiers ("the", 
"a", "an", "that", and "those"). These words help describe nouns and express concepts in the 
text. These functional words are extremely common. Recording the number of these words in 
each document requires a lot of disk space. At the same time, due to their universality and 
function, these words rarely express information about the degree of document relevance 
alone. Therefore, these functional words are basically not helpful for judging the emotion of 
the text. 

Another name for these function words is stop words. Stop words mainly include English 
characters, numbers, mathematical characters, punctuation marks, and single Chinese 
characters that are frequently used. They are called stop words because if they are 
encountered during text processing, the processing is stopped immediately, and they are 
thrown away. In this project, we also discard stop words. 
(c) steam 

There are many forms of the same word in English, such as the singular and plural of 
nouns, the present and past tense of verbs, etc., but these forms have little effect on the 
meaning of the vocabulary and the emotion of the text, so when dealing with English 
Consider the problem of stemming. So, we continue to stem the text to make the meaning of 
each comment easier to capture. 
1.3 Construct a word dictionary 

Next, we need to build our dictionary based on these corpora. The construction of the 
dictionary is to correspond to a number for each token to represent the token. 

After counting the processed text tokens, we will find that there are many words with a 
frequency of only one time. Such words will increase the capacity of our dictionary and will 
also bring some noise to the text processing. After removing these words, on the one hand, 
our dictionary capacity will be greatly reduced, and model training will be accelerated. On the 
other hand, some noise will be reduced. Therefore, we only keep the words that appear more 
than 1 in the corpus in the process of constructing the dictionary. 

It is worth noting that <pad> and <unk> are two initialized tokens, <pad> is used for 
sentence filling, and <unk> is used to replace words that have not appeared in the corpus. 
 With the dictionary, we can construct word-to-token mapping and token-to-word 
mapping, 
1.4 Convert text 

Based on the mapping table, we can convert the original text, that is, convert the text into 
a machine-recognizable code. 

We construct a function that can receive a complete token type sentence and convert it 
into tokens according to the mapping table. In this function, we first need to get the <unk> 
code for use in sentence conversion later. Next, the sentence is mapped, and if there is a word 
that has not been seen, it is replaced with the <unk> token. 
1.5 pad 

After the input sequence is obtained in the previous step, since the original text does not 



necessarily have the same length, in order to ensure that the sentence has the same length, the 
sentence length needs to be processed. For different models, the length requirements may be 
different. We set the desired length as N, truncate sentences with more than N words. 
For sentences with less than N words, use <pad> to fill in at the end of the sentence. 
1.6 Embedding Layer  

Embedding layer, its main function is to map the id of each word to a vector of fixed 
dimensions, each time the same id is mapped to the same data, and the training is completed 
in continuous iterations. What the Embedding layer gets is the word vector of each word. As 
long as we input the corresponding id of the word, we can get its corresponding word vector. 
Since the direct use of one-hot encoding will make the overall network dimension very large 
and difficult to converge, we use embedding_layer to obtain the embedding of the vocabulary 
and use the low-latitude dense embedding vector as the input of the subsequent model. 
 
2. Models 
 

Neural Network 
The DNN model processes sentences in a very simple way. For each word in the 

sentence, the word embedding is first obtained, and then a flatten layer is connected to splice 
these word embeddings, and finally the sentence vector is obtained. Then the sentence vector 
is passed through multiple layers of nerves to obtain the final output. 
1. Model 

In the model, we define the weights of the fully connected layer and the output layer and 
calculate the results. The fully connected layer uses ReLu as the activation function, 
binary_crossentropy is defined in loss, and calculation accuracy is defined in evaluation. Since 
our pos and neg samples are 1:1, so the predicted probability exceeds 0.5, we think it is pos, 
otherwise it is neg. 

Neural networks are a set of algorithms, modeled loosely after the human brain, 
that are designed to recognize patterns. They interpret sensory data through a kind of 
machine perception, labeling or clustering raw input. The patterns they recognize are 
numerical, contained in vectors, into which all real-world data, be it images, sound, 
text or time series, must be translated. 

For a nonlinear function 𝑓(")(. ), and for 𝑗𝑡ℎ node on specific h hidden layer: 

ℎ𝑗 = 𝑓(ℎ)( ∑
𝑖=1

𝑘
𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗),  𝑦 = ∑

$%&

'
˜

𝑤$
˜
ℎ$. Popular choice for 𝑓(")(. ) are tanh, 



sigmoid, and relu functions. This 
neural network uses back propagation 
to solve weights for each node.  

 
2. 

Experiment: 
Parameter fit: 
There are several parameters need to fit in 
order to get the highest accuracy.  

• output_dim: dimension of the dense embedding. This parameter controls the dense 

embedding dimension, the only method that can be tried to get the best parameter is 
through trials. In this process, we try several numbers, since it a classic deep neural 
network, layers for dense will be much higher than LSTM and biLSTM. The attempted 
layers can be201, 22, 23. ... We tried 201, 22, 23, 24, 25, 26, 27, . . . 21 for 5 different lays. 
Finally, we find 1024, 1024, 512,128,1 is the best combination. 

activation: active function specifies the activation function that will be used in LSTM. 
Common choices are tanh, relu, and sigmoid. Since there are actually 5 layors, we wrote a 
prthon program to loop through all 36 combinations, for example, sigmoid + relu + tanh + 
relu + relu, in order to get the best activation function. At last, the highest accuracy occurs 
when combination relu + relu + relu + relu + sigmoid appears. 

 
LSTM 

Compared with the simple NN model, LSTM allows us to operate on the vector sequence, 
which is calculated on the time series, and each calculation considers not only the previous state 
but also the current input. Since the text data itself is organized using certain grammars, it is 
more reasonable to process in time sequence. 

We use LSTM to process the input embedding sequence, and then use the multi-layer 



neural network to classify the final output to get the final output. 
 
1. Principles: 
Long short-term memory (LSTM) is an artificial recurrent neural 
network (RNN) architecture used in the field of deep learning. A 
common LSTM unit is composed of a cell, an input gate, an output 
gate and a forget gate. The cell remembers values over arbitrary 
time intervals and the three gates regulate the flow of information 
into and out of the cell. 
Core ideas behind 
the LSTM: 
Cell State: 
The cell state 
transformation line 
is at the top of an 
LSTM cell. There 
is only minor linear 
interactions in 
order to inherit old 
information. It is 
consistent with the 
natural human language because the context acts as a whole to express sentiment. 
Sigmoid Function: 

𝜎(𝑥) = 0
089%&

, it acts as a function to transform a function into a numerical value between 0 

and 1. In actual language processing, it decides which proportion of data should be inherited 
and how much portion of data should be forgotten. 
 
 

Step by step LSTM information transformation line: 
1.  
 
𝑓! = 𝜎(𝑊![ℎ!:0, 𝑥! + 𝑏&]). In this step, ℎ!:0 is 
some information computed in the previous cell 
and, 𝑥! is the input value specified in the present 
cell. 𝑊![ℎ!:0, 𝑥! + 𝑏&] is function in terms of 
ℎ!:0 and 𝑥! to compute a combination of these 
two input values. After using sigmoid function, it 
decides the portion that how much information 

should be kept in the following steps. 

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Deep_learning


2.  
The next step is to decide what new information 
we’re going to store in the cell state. This has two 
parts. First, a sigmoid layer called the “input gate 
layer” decides which values need to be updated. 
Next, a tanh layer creates a vector of new candidate 
values, 𝐶!, that could be added to the state.  

𝑖! = 𝜎(𝑊'[ℎ!:0,;" + 𝑏']), 𝐶!
˜
=

𝑡𝑎𝑛ℎ(𝑊=[ℎ!:0, 𝑥>] + 𝑏=). Using these equations, 

𝐶!:0
˜

 can be replaced by new candidate 𝐶!
˜

. 

 
3. 
This step updates the old cell state, 𝐶!:0into the new 
cell state, 𝐶!. The previous steps already decided what 
to do, we just need to actually do it. Multiplying the old 
state 𝑓!by forgetting the things that has been decided to 

forget earlier. Then we add 𝑖!𝐶!
˜

. This is the new 

candidate values, scaled by how much people decided 
to update each state value. It depends on the real contents.  

Function: 𝐶! = 𝑓!𝐶!:0 + 𝑖!𝐶!
˜

.  

4.  
 Finally, the output is decided. This output will be 
based on the cell state but will be a filtered version. 
First, a sigmoid layer is ruined to decides what parts 
of the cell state will be the output. The cell gate 
value is turned through tanh function to convert it 
into a numerical between 0 and 1. Then multiply it 
by the output of the sigmoid gate. The function in 
this transition line is 𝑜! = 𝜎(𝑊?[ℎ!:0, 𝑥!] +
𝑏?)𝑎𝑛𝑑ℎ! = 𝑜!𝑡𝑎𝑛ℎ(𝐶!). 

In real application, the activation function in the transformation always depends on the 
context. In our project, we define activation function to to relu function and sigmoid function. 
Algorithm:  
Python has an open-source library Tensorflow, which can train these models automatically.  
 
2. Code 
2.1 Packages 



Keras from Tensorflow: Keras is an open-source, Ml library that is written in Python. Keras 
offers something unique in machine learning: a single API that works across several ML 
frameworks to make that work easier. We recommend using Keras for most, if not all, of your 
machine learning projects. 
2.2 Parameter fit: 
There are several parameters need to fit in order to get the highest accuracy.  

• output_dim: dimension of the dense embedding. This parameter controls the dense 

embedding dimension, the only method that can be tried to get the best parameter is 
through trials. When output_dim = 20, 30, 40, 50 ,60 ,70…100, the highest accuracy 
happens when output_dim = 60. Then, we test all the integers between 55-68. Finally, when 
output_dim = 64, the accuracy reaches highest. 

• batch_size: this is a batch size which controls the number of dimensions that will flow in 

the LSTM layers. The usual set up is dimension >300 considering the the size of all the 
data. When output_dim = 300, 350… 600, the top 2 accuracy happens when batch_size = 
450 and 500. Then, we test all the integers between 450-500. Finally, when batch_size = 
512, the accuracy reaches highest. 

• activation: active function specifies the activation function that will be used in LSTM. 

Common choices are tanh, relu, and sigmoid. Since there are actually 4 layers, we wrote a 
prthon program to loop through all 81 combinations, for example, sigmoid + relu + tanh + 
relu, in order to get the best activation function. At last, the highest accuracy occurs when 
combination relu + relu + relu + sigmoid appears.  

 
 biLSTM 

LSTM can only process the sequence from left to right, which makes the embedding of 
each position only obtain the previous information. The meaning of the vocabulary in each 
position should be affected by the left and right sides together. One-way information will 
obviously affect the effect of the model, so we further use biLSTM to process the input 
Embedding sequence. Similarly, after obtaining the output, a multi-layer neural network is 
used for classification processing. 

1.Model 



• output_dim: dimension of the dense embedding. This parameter controls the dense 

embedding dimension, the only method that can be tried to get the best parameter is 
through trials. When output_dim = 20, 30, 40, 50 ,60 ,70…100, the highest 
accuracy happens when output_dim = 60. Then, we test all the integers between 55-
68. Finally, when output_dim = 64, the accuracy reaches highest. 

• batch_size: this is a batch size which controls the number of dimensions that will 

flow in the LSTM layers. The usual set up is dimension >300 considering the the 
size of all the data. When output_dim = 300, 350… 600, the top 2 accuracy happens 
when batch_size = 450 and 500. Then, we test all the integers between 450-500. 
Finally, when batch_size = 512, the accuracy reaches highest. 

• activation: active function specifies the activation function that will be used in 

LSTM. Common choices are tanh, relu, and sigmoid. Since there are actually 4 
layors, we wrote a prthon program to loop through all 81 combinations, for 
example, sigmoid + relu + tanh + relu, in order to get the best activation function. 
At last, the highest accuracy occurs when combination relu + relu + relu + sigmoid 
appears.  

 
3. results 

 
A Bidirectional LSTM, or biLSTM, is a sequence processing model that consists of 
two LSTMs: one taking the input in a forward direction, and the other in a backwards 
direction. BiLSTMs effectively increase the amount of information available to the 
network, improving the context available to the algorithm (e.g., knowing what words 
immediately follow and precede a word in a sentence). 
 
One sentence pass BiLSTM at a time. For each input sentence of n words, we define an n-
dimensional vector x whose elements are the indices in V corresponding to words appearing 
in the sentence, preserving the order. The input x is passed to an Embedding Layer that 
returns the sequence S = {𝑤( | j =𝑥0, 𝑥@, 𝑥A, . . . 𝑥B} where 𝑤( is the 𝑗!C row of a dense 
matrix W ∈ R | 𝑉0×# , where d ∈ N is a hyperparameter. The vector 𝑤( represents a low-
dimensional vector representation, or word embedding, whereas W is the corresponding 
embedding matrix. The sequence of word embeddings S is then passed as input to two LSTM 
layers that process it in opposing directions (forwards and backwards). Figure 2 shows the 
LSTM layers in their ”unrolled” form as they read the input. Each LSTM layer contains k 
LSTM memory cells. The output from each of the LSTM layers is H = {ℎ! ∈ 𝑅E | t = 1, 
2, ..., n}. Next, we concatenate and flatten 𝐻&?FGHF# and𝐻IHJEGHF#, obtaining a vector p ∈ 
𝑅@EB. 
2. Experiment: 

Parameter fit(调参过程): 

There are several parameters need to fit in order to get the highest accuracy.  



 The results are shown in the figure. Among the three models, NN has the lowest accuracy 
of 0.85068, and biLSTM has the highest accuracy rate of 0.86392 
 

Models Accuracy F1 Time(s) 
NN 0.85068 0.85064 0.9 
LSTM 0.86308 0.86307 25.9 
biLSTM 0.86392 0.86366 49.5 

 

 

 

 

IV. Model combination and implementation 
Bert+KNN 
Model: KNeighborsClassifier (n_neighbors=5, weights=’uniform’, algorithm=’auto’, 
leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs) 
Accuracy: 59.2%, time: 167s 
Hash + Logistics: 
(1) Model: LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, 
solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1) 
(2) Parameters: 
Penalty: l1 is only suitable for liblinear. And l2 is suitable for all. 
       l1+liblinear: accuracy= 88.1%, f1 = 0.8822, time: 114.3399s 
Solver: liblinear+l2: accuracy= 88.2%, f1 = 0.8815, time: 105.932 
    lbfgs+l2: accuracy= 88.2%, f1 = 0.8815, time:147.53 
    sag+l2: accuracy= 88.2%, f1 = 0.8815, time:106.04 
       newton-cg+l2 = 88.2%, f1 = 0.8815, time:121.97 
Because the total time is similar, we choose lbfgs+l2 (default) 
C (Regularization parameter): we choose C from 1 to 10 and test the accuracy. The 



conclusion is that when C=2, the accuracy is highest. 
(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a column 
vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 88.2% and the total time is 105.932s. 
 
Hash + KNN: 
(1) Model: KNeighborsClassifier (n_neighbors=5, weights=’uniform’, algorithm=’auto’, 
leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs) 
(2) Parameters: 
n_neighbors: because we want to classify the data into two classes (positive and negative), 
we choose n_neighbor=2. 
Weights: ‘uniform’: uniform weights. All points in each neighborhood are weighted equally. 
        Accuracy = 62.6%, f1= 0.5196, time=133.828s 

‘distance’: weight points by the inverse of their distance. in this case, closer 
neighbors of a query point will have a greater influence than neighbors which are 
further away. 
Accuracy = 63.7 %, f1 = 0.629, time= 141.414s 

  So we choose weights= “distance” 
p: integer, optional (default = 2) Power parameter for the Minkowski metric. 

p = 1, manhattan_distance (l1) (given weights= “distance”) 
accuracy = 57.4%, f1 = 0.481, time=257.325s   
p = 2, euclidean_distance (l2) (given weights= “distance”) 
accuracy = 63.7 %, f1 = 0.629, time= 141.414s 
Based on accuracy and efficiency, we choose p=2 (default).  

(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a column 
vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 63.7% and the total time is 141.414s. 
 
Hash + SVM: 
(1) Model: svm.SVM()  
(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a column 
vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 88.4%, f1_scoreaccuracy: 0.884 and the total time is 1764 s. 
 
Glove + Logistics: 
(1) Model: LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, 
solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, 
n_jobs=1) 
(2) Parameters: 
Penalty: l1 is only suitable for liblinear. And l2 (default) is suitable for all. 
       l1+liblinear: accuracy=62.9075% 
Solver: liblinear+l2: accuracy=62.7715% 
    Lbfgs+l2: accuracy=62.9115% 



    Sag+l2: accuracy=62.9115% 
      Newton-cg+l2: accuracy= 62.9075% 
Because the total time is similar, we choose lbfgs+l2 (default) 
C (Regularization parameter): we choose C from 1 to 10 and test the accuracy. The 
conclusion is that when C=3, the accuracy is highest. 
(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a 
column vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 62.9115%, f1: 0.6402 and the total time is 23.22s. 
 
Glove + KNN: 
(1) Model: KNeighborsClassifier (n_neighbors=5, weights=’uniform’, 
algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, 
n_jobs=1, **kwargs) 
(2) Parameters: 
n_neighbors: because we want to classify the data into two classes (positive and 
negative), we choose n_neighbor=2. 
Weights: ‘uniform’: uniform weights. All points in each neighborhood are weighted 
equally. 
       Accuracy = 55.0266%, time=135.08s 

‘distance’: weight points by the inverse of their distance. in this case, closer 
neighbors of a query point will have a greater influence than neighbors which 
are further away. 
Accuracy = 55.2586%, time=135.04s 

  So we choose weights= “distance” 
p: integer, optional (default = 2) Power parameter for the Minkowski metric. 

p = 1, manhattan_distance (l1) (given weights= “distance”) 
accuracy = 54.9346%, time=149.90s   
p = 2, euclidean_distance (l2) (given weights= “distance”) 
accuracy = 55.2586%, time=135.04s  
Based on accuracy and efficiency, we choose p=2 (default).  

(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a 
column vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 55.2586%, f1: 0.5435 and the total time is 135.04s. 
 
Word2vec + Logistics 
(1) Model: LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, 
solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, 
n_jobs=1) 
(2) Parameters: 
Penalty: l1 is only suitable for liblinear. And l2 is suitable for all. 
       l1+liblinear: accuracy=85.93%, time=105.09s 
Solver: liblinear+l2: accuracy=85.94%, time=68.16s 
    Lbfgs+l2: accuracy=85.976%, time=61.09s 



    Sag+l2: accuracy=85.95%, time=65.84s 
      Newton-cg+l2 = 85.95%, time=67.24s 
Because the total time is similar, we choose lbfgs+l2 (default) 
C (Regularization parameter): we choose C from 1 to 10 and test the accuracy. The 
conclusion is that when C=3, the accuracy is highest. 
(4) Input: x is a matrix, and each row represents the feature vector of a text. Y is a 
column vector, and each row represents the label (1 or 0) of a text. 
(3) Result: the accuracy is 85.976%, f1:0.8603 and the total time is 61.09s. 
 
Word2vec + KNN 
(1) Model: KNeighborsClassifier (n_neighbors=5, weights=’uniform’, 
algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, 
n_jobs=1, **kwargs) 
(2) Parameters: 
n_neighbors: because we want to classify the data into two classes (positive and 
negative), we choose n_neighbor=2. 
Weights: ‘uniform’: uniform weights. All points in each neighborhood are weighted 
equally. 
        Accuracy = 66.56%, time=307.56s 
‘distance’: weight points by the inverse of their distance. in this case, closer 
neighbors of a query point will have a greater influence than neighbors which are 
further away. 
Accuracy = 68.03%, time=297.24s 
So, we choose weights= “distance” 
p: integer, optional (default = 2) Power parameter for the Minkowski metric. 
p = 1, manhattan_distance (l1) (given weights= “distance”) 
accuracy = 67.84%, time=331.53s   
p = 2, euclidean_distance (l2) (given weights= “distance”) 
accuracy = 68.03%, time=297.24s  
Based on accuracy and efficiency, we choose p=2 (default).  
(3) Input: x is a matrix, and each row represents the feature vector of a text. Y is a 
column vector, and each row represents the label (1 or 0) of a text. 
(4) Result: the accuracy is 68.03%, f1: 0.6675 and the total time is 297.24s. 
 
Word2vec + SVM 
(1) Model: 
SVM (self,data,labels,vec=None,vec_size = 250) 
(2) Parameters: 
Data: The list tokenized texts of movie comments in each document. 
Labels: The 0/1 numeric labels we accessed in the Word2Vec function. 
Vec: A zero matrix of size (50000, self.vec_size).  
Vec_size: The size of the Word2Vec vectors. 
In the gensim.models.Word2Vec() function, we also heve several parameters: 
Vec_size: The size of the Word2Vec vectors consistent with the previous definition. 



Window: The size of window, e.g., the number of adjacent words that forms vectors for 
computing the word vectors. 
Workers: The number of parallelisms used to control training. 
Min_count: Words with a frequency less than min_count is discarded.  
Vec_size = 100, accuracy = 71% 
Vec_size = 200, accuracy = 74.09% 
Vec_size = 250, accuracy = 75.48% 
(3) Inputs 

The SVM class will inherit the word vector generated by Word2Vec and generate a 
hyperplane boundary of positive/negative sentiment use the vectors. The svm.SVC() function 
we imported from module sklearn.svm could return the result of SVM prediction of 
sentiments. 
(4) Result 
The accuracy of Word2Vec with SVM is 75.48% 
 

TF-IDF + Naïve_Bayes 

Based on the feature vectors previously generated by tfidf, we can use the naïve bayes 
model to fit the data. The default of “max_feature” is none. If we use the default set, there’ll 
be no result. 

Parameter fitting: 

But when we set the max_feature to 10000, the result becomes 

The accuracy of GaussianNB is 0.6226 
The accuracy of MultinomialNB is 0.82428 
The accuracy of BernoulliNB is 0.81884 
 
then set the parameters to 1000, the result becomes  
 
The accuracy of GaussianNB is 0.76896 
The accuracy of MultinomialNB is 0.80752 
The accuracy of BernoulliNB is 0.79792 

So we can see that the parameters can’t be too small, after many trial and error, we got the 
best parameter: 3000, and the result is  

The accuracy of GaussianNB is 0.74312, f1_score: 0.715  
The accuracy of MultinomialNB is 0.829，f1_score: 0.827  
The accuracy of BernoulliNB is 0.82316, f1_score: 0.819 

 
NN, LSTM, biLSTM 



 

 
 

V. Conclusion 

From all the models above: the combination of hash and SVM has the highest accuracy. 
So the final accuracy of our project is 88.4%.  
 
1. Data Processing 
In our project, our group apply TF-IDF, word2vec, Glove and Bert to process data. 
For this project, the above methods have some advantages and disadvantages as 
follow: 
 
TF-IDF: the key to TF-IDF is to filter out less important words and to retain more 
important words as features. It focuses on the role of words in the text classification. 
As our results shown, TF-IDF performs well in the text sentiment analysis.  
Disadvantages: ignore the associations between text contexts. 
 
Hash Technique: hash technique is useful when dealing with large amounts of words 
after tokenization. Disadvantages: similar to TF-IDF, hash technique is belong to bag 
of words models so it also assumes that all words are independent. It ignores the 
contextual relationship between words in the text. 
 
Word2vec & Glove: both of them can represent each word with a vector based on co-
occurrence matrix. But they also have some differences.  
Word2vec: the key of word2vec is to train each local content window separately. It 
considers the influence of the context of words.  
Disadvantages: word2vec make less use of the information of global co-occurrence 
matrix. In addition, word2vec can deal with polysemous words well. 
Glove: d is an improvement based on word2vec. Glove make good use of the 
information contained in the co-occurrence matrix. The key to glove is to form a 
matrix in the shape of (number of words, number of words) firstly and do dimension 



reduction for the matrix. So, in our project, the code must build a matrix in the form 
of (250934*250934) firstly. But due to the big size of matrix, the requirement for 
computer’s running memory is high and normal computers can handle the task. So, 
our group do some reduction of words for the original word bags. But if we cut down 
words over, the accuracy will be affected by the reduction of words. 
 
Bert: advantages: 1. bert can capture bidirectional context information 2. Bert is long 
term dependency. Disadvantages: for the project, word processing with bert converges 
slowly. It takes more than 40 hours to process the given 50000 texts totally. 
 
2. Model  
For the project, our group use logistic regression, Naïve Bayes, KNN, SVM and 
neural network. For this project, the above methods have some advantages and 
disadvantages as follow: 
Word-Level Sentiment Analysis (NOT machine learning):  
Disadvantages: (1) the word-level sentiment analysis ignores the context of words and 
the relationship between each word. (2) the weight of each word is equal, and it 
cannot extract more important words.  
 
Logistic regression: logistic regression plays a significant role in dealing with binary 
classification. And as the result shown, logistic regression does well in both accuracy 
and efficiency.  
 
Naïve Bayes: the target of naïve bayes is to find p (label/word features) and it fits the 
target of our project well. Disadvantages: naïve bayes makes assumptions that all 
words are independent, and all features are equally important. The first assumption 
will make some influences on the accuracy. And because IF-IDF help extract more 
features, the second assumption’ impacts are reduced to some extent. 
 
KNN: when the size of features is large, KNN needs a large amount of computation 
so its efficiency is low. 
 
SVM: in our project, the key of SVM is to build a hyperplane and solve binary 
classification problems. For our project, the accuracy of SVM is relatively high but 
the efficiency of SVM is relatively low.  
 
Neural network: we make use of NN, LSTM and biLSTM to achieve classification. 
Neural network is a kind of advanced algorithm for text sentiment analysis. And as 
our results shown, the accuracy of biLSTM is highest. 
 

VI. Distribution  
 
 



 


