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Final Report: Movie Information Chatbot

Introduction
This report details the development of a sophisticated chatbot designed to interact in chatroom environments, focusing on 
providing information related to movies. The bot integrates multiple modules for natural language processing (NLP), named 
entity recognition (NER), relation extraction, and recommendation generation, offering a comprehensive solution for various 
user inquiries.

Technical Implementation
Python: Primary programming language.

Spacy: For NER and text processing.

RDFlib: For handling RDF graph data.

Sklearn: Used in calculating embeddings and pairwise distances.

Pandas & Numpy: For data manipulation and mathematical operations.

Speakeasy API: For chatroom interactions.

NumPy : Handles the loading and processing of pre-trained entity and relation embeddings.

flair : Powers the NER and POS tagging to extract entities and understand sentence structure.

transformers : Provides pre-trained models for NER and token classification. Levenshtein : Assists in finding the closest 
matching string from a list, aiding relation extraction.

inflect : Used to handle pluralization and singularization of nouns during relation extraction.

re : Enables regular expression operations critical for parsing and extracting information from RDF data.

Methodology
1. Data Loading: The bot loads RDF graph data, embeddings, and other necessary datasets at initialization.

2. Message Processing: On receiving a message, the bot first attempts to extract entities and relations. Depending on the 
query type, it then either constructs a SPARQL query for direct answers or resorts to embedding-based inference.

3. Response Generation: The bot generates responses based on the query type – direct answers from RDF data, 
recommendations using embeddings, or crowdsourced information.

4. Multimodal Interaction: In addition to textual responses, the bot can handle image-based queries, providing a richer 
interaction experience.

Key Components
1. Agent Class: The main class that handles the bot's operations. It includes methods for loading data, handling messages 

and reactions, and generating responses.

2. NER Module (NER_tool): Utilizes Spacy's transformer-based model to extract entities from the text.

3. Relation Extraction (relation_extractor): Processes sentences to extract potential relations using POS tagging and word 
forms.

4. Recommendation System (MovieRecommender): Generates movie recommendations based on user queries. It appears 
to use RDF data and embeddings for this purpose.

5. Crowdsourcing Module (Crowdsource): Handles cases where the bot resorts to crowdsourced data to find answers, 
using a pre-processed dataset.

6. SPARQL Queries: Used for extracting data from RDF graphs, particularly for direct answers related to movies.
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7. Embedding-based Response Generation: For cases where direct answers are not found, the bot uses embeddings to 
generate probable responses.

Key Features
Handling of various query types: Our bot can handle direct queries, recommendations, and more complex inquiries.

Multimodal Responses: Ability to respond with text and images

Embedding-based Inference: For questions that cannot be directly answered from the RDF graph, the bot uses 
embeddings to infer likely answers.

Integration with Chatrooms: The bot is designed to interact in chatroom environments, responding to both messages and 
reactions.

Key Capabilites
Factual Data Retrieval: Extracts precise information from RDF graphs.

Embedding-Based Inference: Infers answers using calculated embeddings when RDF data doesn’t suffice.

Multimodal Interactions: Handles both text and image-based queries.

Recommendations: Provides movie suggestions based on user preferences.

Crowdsourced Data Processing: Utilizes crowdsourced information for complex queries.

Code Snippets and Explanations

Factual Data Retrieval

The chatbot extracts factual information using SPARQL queries. Here's a snippet demonstrating a SPARQL query construction:

def construct_query(self, entity, relation):

    return f''' PREFIX wdt: <http://www.wikidata.org/prop/direct/> SELECT ?obj WHERE {{ ?ent rdfs:label '{entity}'@en . ?ent wdt:{relat

This function dynamically constructs a query to fetch data related to the extracted entity and its relation. Apart from extracting 
one certain movie or other instance, we need to upgrade our NER system to makesure that it can detect multiple movie names 
for recommendation. Thus, we change the NER from using BERT-based model to Spacy. Now it can extract multiple movies in 
one sentence.

def get_relations(self, message, relations, graph, WDT):

        # lemmatizer = WordNetLemmatizer()

        nouns = []

        relation = []

        auxiliary_verbs = ["is", "are", "am", "was", "were", "have", "has", "had", "be", "been", "do", "does", "did", "will", "shall", 

        properties = set()

        properties.update(self.noun_film_properties)

        properties.update(relations)

        inflect_engine = inflect.engine()

        pos = self.get_pos(message)

        for pair in pos:

            if pair[0].lower() in auxiliary_verbs:

                continue

            if pair[1][:2] == "VB":

                noun_conversions = get_word_forms(pair[0].lower())['n']

                matching_conversions = set(properties).intersection(noun_conversions)

                for noun in matching_conversions:

                    if noun in relations:

                        nouns.append(noun)

                    elif noun in self.noun_film_properties:

                        for k, v in self.noun_map.items():

                            if noun in v:

                                nouns.append(k)

                                break

            elif pair[1][:2] == 'NN':

                #check if plural

                if pair[0][-1] == 'S':

                    noun = inflect_engine.singular_noun(pair[0].lower())

                else:

                    noun = pair[0].lower()
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                if noun in relations:

                    nouns.append(noun)

                elif noun in self.noun_film_properties:

                    for k, v in self.noun_map.items():

                        if noun in v:

                            nouns.append(k)

                            break

            elif pair[0] == 'executive':

                nouns.append('executive producer')

                break

        

        # relation = ''.join(relation)

        for noun in set(nouns):

            if noun == 'producer':

                relation.append({'relation': noun, 'ids': 'P162'})

                break

            elif noun == 'excutive producer':

                relation.append({'relation': noun, 'ids': 'P1431'})

                break

            relation.append({'relation': noun, 'ids': self.getRelation_ID(graph, noun, WDT)})

        return relation

    

    def getRelation_ID(self, graph, relation, WDT):

        '''

        recieves nouns (relations) and converts them to their URI ID

        '''

        

        query = f'''

            prefix wdt: <http://www.wikidata.org/prop/direct/>

            prefix wd: <http://www.wikidata.org/entity/>

            SELECT ?res

            WHERE{{

                ?res rdfs:label "{relation}"@en.

                }}'''

        URIs = list(filter(lambda x: WDT in x, [x[0] for x in list(graph.query(query))]))

        rel = []

        for uri in URIs:

            if WDT in uri:

                relId = re.match("{}(.*)".format(WDT), uri)[1]

                rel.append(relId)

        return rel

class NER_tool:

    def __init__(self):

        # Load spaCy's transformer-based model

        self.nlp = spacy.load("en_core_web_trf")

        print('spaCy NER model initialized.')

    def extract_entities(self, text):

        # Process the text and extract entities

        doc = self.nlp(text)

        entities = [entity.text for entity in doc.ents]

        return entities

Embedding-Based Inference

When direct answers are not available, the bot uses embeddings for inference:

def create_response_emb(self, ent_id, relation, entity_emb, ent2id, relation_emb, rel2id, ent2lbl, id2ent):

        ent_uri = URIRef(f"http://www.wikidata.org/entity/{ent_id}")

        rel_uri = URIRef(f"http://www.wikidata.org/prop/direct/{relation[0]['ids'][0]}")

        head = entity_emb[ent2id[ent_uri]]

        pred = relation_emb[rel2id[rel_uri]]

        lhs = head + pred

        dist = pairwise_distances(lhs.reshape(1, -1), entity_emb).reshape(-1)

        rank = dist.argsort()

        most_likely = rank[0]

        emb_result = ent2lbl[id2ent[most_likely]]

        return emb_result

This method calculates embeddings to infer the most likely response based on the proximity of embeddings.

Multi-Modal Interactions
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The bot can handle image-based queries, enhancing user experience:

The code snippet can be formatted as follows:

logging.info("Multimedia mode")

            mutltimedia_mode = True

            imdb_query = f'''

                PREFIX wd: <http://www.wikidata.org/entity/>

                PREFIX wdt: <http://www.wikidata.org/prop/direct/>

                SELECT ?imdbID

                WHERE {{

                    wd:{ent_id_short} wdt:P345 ?imdbID.

                }}

            '''

            imdb_id = self.run_sparql_query(imdb_query)

            logging.info(f"imdb id: {imdb_id}")

            im_id = ''

            for image in self.images:

                if image['cast'] == [imdb_id] and image['type'] != 'poster':

                    im_id = image['img']

                    im_id = 'image:'+im_id.strip('.jpg')

                    break

            if im_id:

                formatted_response = f" There you go... {im_id}"

            else:

                formatted_response = f" Couldn't find a image of {entity_name}"

        

            return formatted_response

This conditional statement checks for image-related keywords in the user's message and triggers image retrieval. After that it 
searches the IMDB ID and the goes to the provided image.json to find a ID with a picutre and sends the jpg path to the chat 
where it will be outputed as an image.

Recommendations

For recommendations, the bot uses user preferences to suggest movies:

class MovieRecommender:

    """

    A class for a movie recommender system using RDF graph and entity embeddings.

    """

    def movie_recom_movie(self, movie_ids, top_n):

        """

        Recommend movies based on a set of input movie IDs.

        """

        recom_movie = []

        input_embeddings = [self.entity_emb[self.ent2id[self.WD[id]]] for id in movie_ids]

        ent_mean = np.mean([self.entity_emb[self.ent2id[self.WD[id]]] for id in movie_ids], 0)

        similarity_scores = cosine_similarity([ent_mean], self.entity_emb)[0]

        recommended_movie_indices = np.argsort(similarity_scores)[::-1]

        for idx in recommended_movie_indices:

            if len(recom_movie) >= top_n:

                break

            current_emb = self.entity_emb[idx]

            if not any(np.array_equal(current_emb, inp_emb) for inp_emb in input_embeddings):

                movie_name = self.ent2lbl[self.id2ent[idx]]

                recom_movie.append(movie_name)

        return recom_movie

    def genre_recom_movie(self, genre):

        """

        Recommend movies based on a specified genre.

        """

        query = f'''

        PREFIX wdt: <http://www.wikidata.org/prop/direct/>

        PREFIX wd: <http://www.wikidata.org/entity/>

        PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

        SELECT ?movie ?movieLabel WHERE {{

            ?movie wdt:P31 wd:Q11424;  # Instance of film

                wdt:P136 ?genre.    # Has genre

            ?genre rdfs:label "{genre}"@en.  # Genre name in English

            OPTIONAL {{ ?movie rdfs:label ?movieLabel FILTER(LANG(?movieLabel) = "en") }}

        }}

        LIMIT 5

        '''
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        qres = list(self.graph.query(query))

        return [str(row.movieLabel) for row in qres if row.movieLabel]

    def actor_recom_movie(self, actor):

        """

        Recommend movies based on a specified actor.

        """

        query = f'''

        PREFIX wdt: <http://www.wikidata.org/prop/direct/>

        PREFIX wd: <http://www.wikidata.org/entity/>

        PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

        SELECT ?movie ?movieLabel WHERE {{

            ?person rdfs:label "{actor}"@en.

            {{

                ?movie wdt:P161 ?person. 

            }}

            UNION

            {{

                ?movie wdt:P57 ?person.

            }}

            OPTIONAL {{ ?movie rdfs:label ?movieLabel FILTER(LANG(?movieLabel) = "en") }}

        }}

        LIMIT 5

        '''

        qres = list(self.graph.query(query))

This function generates movie recommendations tailored to the user's stated preferences.

As for the recommendation by movie, we use the cosine similarities. Firstly, all embeddings of movies will be find and used to 
calculate the average vector. Then we'll find the top-k nearest vector movie embeddings from the average vector and select 
them as the recommendations. As for genre and person recommendation, we use sparql query to search for movies sorted by 
IMDB id.

Crowdsourced Data Processing

The bot integrates crowdsourced data for complex queries:

Here is the formatted code snippet:

import rdflib

import pandas as pd

import numpy as np

import csv

from rdflib.namespace import RDFS

from ner import NER_tool

from get_relations import relation_extractor

from rdflib import URIRef

class Crowdsource:

    def __init__(self, graph, relations, lbl2ent, ent2lbl, WD, WDT):

        self.crowdSource = pd.read_csv('dataset/crowd_data/crowd_data.tsv', sep='\t')

        self.crowdSource['LifetimeApprovalRate'] = self.crowdSource['LifetimeApprovalRate'].str.rstrip('%').astype('float')

        self.crowdSource = self.crowdSource.sort_values(by=['HITId', 'LifetimeApprovalRate', 'WorkTimeInSeconds'], ascending=[True, 

True, True])

        self.crowdSource = self.crowdSource.drop(self.crowdSource.groupby('HITId').head(2).index)

        self.ner = NER_tool()

        self.relation_model = relation_extractor()

        self.relations = relations

        self.lbl2ent = lbl2ent

        self.ent2lbl = ent2lbl

        self.graph = graph

        self.WD = WD

        self.WDT = WDT

        self.extract = None

 

    def crowdSearch(self):

        data = self.crowdSource

        id = self.extract['HITTypeId'].unique()[0]

        data = data[data['HITTypeId'] == id]

        data = data.groupby(['HITId', 'AnswerLabel']).size().reset_index(name='count')

        data['count'].astype(int)

        data = data.pivot(index='HITId', columns='AnswerLabel', values='count')

        data.fillna(0, inplace=True)

        # data['total'] = data['CORRECT'] + data['INCORRECT']

        data['P_i'] = (data['CORRECT']**2 + data['INCORRECT']**2 - 3)/6

        data['P_i'].astype(float)

        P_c = data['CORRECT'].sum(axis=0)/(3*len(data))

        P_i = data['INCORRECT'].sum(axis=0)/(3*len(data))
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        P = data['P_i'].sum(axis=0)/len(data)

        P_e = P_c**2 + P_i**2

        kappa = round(((P - P_e)/(1 - P_e)), 3)

        result = self.extract['Input3ID'].iloc[0]

        answer_label = self.extract['AnswerLabel']

        if result[:1] == 'wd':

            full_uri = f"http://www.wikidata.org/entity/{result[3:]}"

            entity_uri = URIRef(full_uri)

            result = self.ent2lbl[entity_uri]os*(pos-1)+neg*(neg-1))/(n*(n-1)))

        return result, answer_label, kappa

This method processes crowdsourced data, cleaning it based on specific criteria, and calculates Cohen's kappa for inter-rater 
agreement.

We extract the answer by the given entity id and relation id. Before that the whole data needs a cleaning by removing the data 
for the same question which has the least two lifetimeapproval rate (if its the same delete the shorter worktime)
When calculating the inter-rate agreement, we calculate it for each question regarded by the HITTypeId, which means that if 
this id is the same for questions, their rate is the same
And the inter-rate formula is the Cohen's kappa, Crowd on web I or II.

Screenshots
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